Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Evolving disjunctive and conjunctive topical queries based on multi-objective optimization criteria

Cecchini, Rocío LujánIcon ; Lorenzetti, Carlos MartinIcon ; Maguitman, Ana GabrielaIcon
Fecha de publicación: 02/2009
Editorial: Sociedad Iberoamericana de Inteligencia Artificial
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this work we propose techniques based on single - and multi-objective evolutionary algorithms to automatically evolve a population of topical queries. The developed techniques can be applied in the implementation of a topical search system. We report on the results of different strategies that attempt to evolve conjunctive and disjunctive queries. Our analysis reveals the limitations of the single-objective approach and highlights the advantages of applying multi-objective evolutionary algorithms for the problem at hand. In addition, we observe that disjunctive queries have the potential to achieve better retrieval performance than conjunctive queries. Finally, we show that the multi-objective evolutionary approach results in better performance than a baseline and other state-of-the-art techniques for query refinement.
Palabras clave: Conjunctive Queries , Disjunctive Queries , Multi-Objective Evolutionary Algorithms , Topical Search
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 458.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/75523
URL: https://www.redalyc.org/html/925/92513154003/index.html
URL: http://journaldocs.iberamia.org/articles/620/article%20(1).pdf
URL: http://journal.iberamia.org/public/Vol.1-14.html#2009
DOI: http://dx.doi.org/10.4114/ia.v13i44.1042
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Cecchini, Rocío Luján; Lorenzetti, Carlos Martin; Maguitman, Ana Gabriela; Evolving disjunctive and conjunctive topical queries based on multi-objective optimization criteria; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 13; 44; 2-2009; 14-26
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES