Artículo
Water relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina
Saha, Sonali; Holbrook, Michell N; Montti, Lia Fernanda
; Goldstein, Guillermo Hernan
; Knust Cardinot, Gina
Fecha de publicación:
04/2009
Editorial:
American Society of Plant Biologist
Revista:
Plant Physiology
ISSN:
1532-2548
e-ISSN:
0032-0889
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Bamboos are prominent components of many tropical ecosystems, yet little is known about the physiological mechanisms utilized by these gigantic forest grasses. Here, we present data on the water transport properties of Chusquea ramosissima and Merostachys claussenii, monocarpic bamboo grasses native to the subtropical Atlantic forests of Argentina. C. ramosissima and M. claussenii differed in their growth form and exhibited contrasting strategies of water transport. Maximum xylem hydraulic conductivity of C. ramosissima culms was 2-fold higher than that of M. claussenii. C. ramosissima cavitated at relatively high water potentials (50% loss of conductivity at ≥1 MPa), whereas M. claussenii was more drought tolerant (50% loss at ≤3 MPa). Both species exhibited significant loss of hydraulic conductivity during the day, which was reversed overnight due to the generation of root pressure. The photosynthetic capacities of both bamboo species, estimated based on electron transport rates, were moderate, reflecting both the large amount of leaf area supported by culms and diurnal loss of hydraulic conductivity due to cavitation. Leaf hydraulic conductance was also relatively low for both species, congruent with their modest photosynthetic capacities. Within its native range, C. ramosissima is highly invasive due to its ability to colonize and persist in both forest gaps and land cleared for agriculture. We propose that a highly vulnerable vasculature, coupled with diurnal root pressure and an allometry that allows substantial leaf area to be supported on relatively slender culms, are key traits contributing to the ecological success of C. ramosissima.
Palabras clave:
Bamboo
,
Atlantic Forest
,
Hydraulic Conductivity
,
Root Pressure
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - NOA SUR)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - NOA SUR
Articulos(IEGEBA)
Articulos de INSTITUTO DE ECOLOGIA, GENETICA Y EVOLUCION DE BS. AS
Articulos de INSTITUTO DE ECOLOGIA, GENETICA Y EVOLUCION DE BS. AS
Citación
Saha, Sonali; Holbrook, Michell N; Montti, Lia Fernanda; Goldstein, Guillermo Hernan; Knust Cardinot, Gina; Water relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina; American Society of Plant Biologist; Plant Physiology; 149; 4; 4-2009; 1992-1999
Compartir
Altmétricas