Artículo
Probability mapping images in dynamic speckle classification
Fecha de publicación:
02/2013
Editorial:
Optical Society of America
Revista:
Applied Optics
ISSN:
1559-128X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose the use of a learning procedure to identify regions of similar dynamics in speckle image sequences that includes more than one descriptor. This procedure is based on the application of a naïve Bayes statistical classifier comprising the use of several descriptors. The class frontiers can be depicted so that the proportion of identified regions may be measured. To demonstrate the results, assembly of an RGB image, where each plane (R, G, and B) is associated with a particular region (class), was labeled according to its biospeckle dynamics. A high brightness in one color means a high probability of the pixel belonging to the corresponding class, and vice versa.
Palabras clave:
Dynamic Speckle
,
Neural Network
,
Naive Bayes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIOP)
Articulos de CENTRO DE INVEST.OPTICAS (I)
Articulos de CENTRO DE INVEST.OPTICAS (I)
Citación
Passoni, Isabel; Rabal, Hector Jorge; Meschino, Gustavo; Trivi, Marcelo; Probability mapping images in dynamic speckle classification; Optical Society of America; Applied Optics; 52; 4; 2-2013; 726-733
Compartir
Altmétricas