Artículo
Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection
Fecha de publicación:
12/2017
Editorial:
Universidad Nacional de La Plata. Facultad de Informática
Revista:
Journal of Computer Science & Technology
ISSN:
1666-6038
e-ISSN:
1666-6046
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Faces and facial expressions recognition is an interesting topic for researchers in machine vision. Viola-Jones algorithm is the most spread algorithm for this task. Building a classification model for face recognition can take many years if the implementation of its training phase is not optimized. In this study, we analyze different implementations for the training phase. The aim was to reduce the time needed during training phase when using one computer with a cheap graphical processing unit (GPU). The execution times were analyzed and compared with previous studies. Results showed that combining C language, CUDA, etc., it is possible to reach acceptable times for training phase. Further research may involve the measurement of the performance of our approach computers with better GPU capacity and exploring a multi-GPU approach.
Palabras clave:
Adaboost
,
Viola-Jones Algorithm
,
Feature Selection
,
Cuda
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Lescano, Germán Ezequiel; Santana Mansilla, Pablo Fernando; Costaguta, Rosanna Nieves; Analysis of a GPU implementation of Viola-Jones' Algorithm for Features Selection; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 17; 1; 12-2017; 68-73
Compartir