Mostrar el registro sencillo del ítem
dc.contributor.author
Shmerkin, Pablo Sebastian
dc.date.available
2019-03-26T22:20:09Z
dc.date.issued
2017-04
dc.identifier.citation
Shmerkin, Pablo Sebastian; Salem Sets with No Arithmetic Progressions; Oxford University Press; International Mathematics Research Notices; 2017; 7; 4-2017; 1929-1941
dc.identifier.issn
1073-7928
dc.identifier.uri
http://hdl.handle.net/11336/72608
dc.description.abstract
We construct compact Salem sets in R/Z of any dimension (including 1), which do not contain any arithmetic progressions of length 3. Moreover, the sets can be taken to be Ahlfors regular if the dimension is less than 1, and the measure witnessing the Fourier decay can be taken to be Frostman in the case of dimension 1. This is in sharp contrast to the situation in the discrete setting (where Fourier uniformity is well known to imply existence of progressions) and helps clarify a result of Łaba and Pramanik on pseudo-random subsets of R which do contain progressions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Arithmetic Progressions
dc.subject
Salem Sets
dc.subject
Pseudo-Randomness
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Salem Sets with No Arithmetic Progressions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-26T13:58:16Z
dc.journal.volume
2017
dc.journal.number
7
dc.journal.pagination
1929-1941
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
International Mathematics Research Notices
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1510.07596
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/imrn/rnw097
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/7/1929/3060565
Archivos asociados