Mostrar el registro sencillo del ítem
dc.contributor.author
Fernández Michelli, Juan Ignacio
dc.contributor.author
Hurtado, Martin
dc.contributor.author
Areta, Javier Alberto
dc.contributor.author
Muravchik, Carlos Horacio
dc.date.available
2019-03-22T19:55:29Z
dc.date.issued
2017-05
dc.identifier.citation
Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Unsupervised Polarimetric SAR Image Classification Using Gp 0 Mixture Model; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 14; 5; 5-2017; 754-758
dc.identifier.issn
1545-598X
dc.identifier.uri
http://hdl.handle.net/11336/72339
dc.description.abstract
This letter proposes a polarimetric synthetic aperture radar image classification method based on the expectation-maximization algorithm. It is an unsupervised algorithm that determines the number of classes in the scene following a top-down strategy using a covariance-based hypothesis test. A G0 p mixture model is used to describe multilook complex polarimetric data, and the proposed algorithm is tested in simulated and real data sets obtaining good results. The classification performance is evaluated by means of the overall accuracy and the kappa indices obtained from the Monte Carlo analysis. Finally, the results are compared with those obtained by other classic and recently developed classification algorithms.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Classification
dc.subject
Expectation-Maximization (Em) Algorithm
dc.subject
G0 P Distribution
dc.subject
Mixture Models
dc.subject
Radar Signal Processing
dc.subject
Synthetic Aperture Radar (Sar) Images
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Unsupervised Polarimetric SAR Image Classification Using Gp 0 Mixture Model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-03-15T18:25:30Z
dc.journal.volume
14
dc.journal.number
5
dc.journal.pagination
754-758
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Fernández Michelli, Juan Ignacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Hurtado, Martin. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Areta, Javier Alberto. Universidad Nacional de Rio Negro. Sede Andina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Muravchik, Carlos Horacio. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Ieee Geoscience and Remote Sensing Letters
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/LGRS.2017.2679103
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7887730
Archivos asociados