Artículo
Unsupervised Polarimetric SAR Image Classification Using Gp 0 Mixture Model
Fernández Michelli, Juan Ignacio
; Hurtado, Martin
; Areta, Javier Alberto
; Muravchik, Carlos Horacio
Fecha de publicación:
05/2017
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Geoscience and Remote Sensing Letters
ISSN:
1545-598X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This letter proposes a polarimetric synthetic aperture radar image classification method based on the expectation-maximization algorithm. It is an unsupervised algorithm that determines the number of classes in the scene following a top-down strategy using a covariance-based hypothesis test. A G0 p mixture model is used to describe multilook complex polarimetric data, and the proposed algorithm is tested in simulated and real data sets obtaining good results. The classification performance is evaluated by means of the overall accuracy and the kappa indices obtained from the Monte Carlo analysis. Finally, the results are compared with those obtained by other classic and recently developed classification algorithms.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Unsupervised Polarimetric SAR Image Classification Using Gp 0 Mixture Model; Institute of Electrical and Electronics Engineers; Ieee Geoscience and Remote Sensing Letters; 14; 5; 5-2017; 754-758
Compartir
Altmétricas