Mostrar el registro sencillo del ítem

dc.contributor.author
Postuma, I.  
dc.contributor.author
Bortolussi, S.  
dc.contributor.author
Protti, N.  
dc.contributor.author
Fatemi, S.  
dc.contributor.author
González, Sara Josefina  
dc.contributor.author
Provenzano, Lucas  
dc.contributor.author
Battistoni, G.  
dc.contributor.author
Altieri, S.  
dc.date.available
2019-03-20T18:22:55Z  
dc.date.issued
2017-10  
dc.identifier.citation
Postuma, I.; Bortolussi, S.; Protti, N.; Fatemi, S.; González, Sara Josefina; et al.; Abstract ID: 51 Monte Carlo optimization of a neutron beam from 5 MeV 9 Be(p,n) 9 B reaction for clinical BNCT; Istituti Editoriali e Poligrafici Internazionali; Physica Medica; 42; 10-2017; 10-11  
dc.identifier.issn
1120-1797  
dc.identifier.uri
http://hdl.handle.net/11336/72119  
dc.description.abstract
Boron Neutron Capture Therapy (BNCT) is an experimental radiotherapy that uses the combination of neutron irradiation and 10B to treat neoplasms. By means of this technique, many clinical trials were performed worldwide with promising results [1] using research nuclear reactors as neutron sources. Anyhow, these machines have several problems that hinder the development of dedicated BNCT hospitals. This issue can now be overcome by using intense-current proton accelerators, which coupled with beryllium or lithium targets yield more than 1014 neutron per second. This can be a boost to BNCT because accelerators are more compact and can be installed within hospitals.The Italian National Institute of Nuclear Physics (INFN) designed and manufactured a Radiofrequency Quadrupole proton accelerator (RFQ) [2], which delivers 5 MeV protons with 30 mA current in a Continuous Wave (CW) mode and it is coupled to a beryllium target. This accelerator could be installed at Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia.In this work we present the MC calculations for the tailoring of a BNCT neutron beam obtained by the described RFQ. Firstly, we show that MC transport codes such as MCNP and PHITS are not able to simulate the correct neutron spectra from 5 MeV protons interacting on beryllium. Therefore, the neutron double differential source implemented in MCNP was extracted from the measurements performed by Agosteo et al. [3]. As the energy range goes up to 3.5 MeV, neutrons need to be moderated and collimated by a Beam Shaping Assembly (BSA), because BNCT requires a spectrum peaked between 1 and 10 keV. Differently from the past, where the optimal configuration was chosen according to physical characteristics of the beam, in this case the results were evaluated on the basis of the dosimetry obtained in a real clinical case by treatment planning simulation. What emerges, is that the classical figures of merit employed for the tailoring of a clinical BNCT [4] should be taken as a first guideline, while the dosimetric assessment on realistic clinical scenarios is the most appropriate criterion for beam evaluations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Istituti Editoriali e Poligrafici Internazionali  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bnct  
dc.subject
Monte Carlo  
dc.subject
Acelerator Based Neutron Beam  
dc.subject
Bsa  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Abstract ID: 51 Monte Carlo optimization of a neutron beam from 5 MeV 9 Be(p,n) 9 B reaction for clinical BNCT  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-03-20T13:27:44Z  
dc.journal.volume
42  
dc.journal.pagination
10-11  
dc.journal.pais
Italia  
dc.journal.ciudad
Pisa  
dc.description.fil
Fil: Postuma, I.. Unit of Pavia; Italia  
dc.description.fil
Fil: Bortolussi, S.. University of Pavia; Italia  
dc.description.fil
Fil: Protti, N.. Unit of Pavia; Italia  
dc.description.fil
Fil: Fatemi, S.. Unit of Pavia; Italia. University of Pavia; Italia  
dc.description.fil
Fil: González, Sara Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: Provenzano, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: Battistoni, G.. Unit of Milan; Italia  
dc.description.fil
Fil: Altieri, S.. Unit of Pavia; Italia. University of Pavia; Italia  
dc.journal.title
Physica Medica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1120179717303459  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.ejmp.2017.09.026