Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Real-time rescheduling of production systems using relational reinforcement learning

Palombarini, Jorge AndrésIcon ; Martínez, Ernesto CarlosIcon
Fecha de publicación: 12/2011
Editorial: QUALIS CAPES (UFSC)
Revista: Iberoamerican Journal of Industrial Engineering
ISSN: 2175-8018
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

Most scheduling methodologies developed until now have laid down good theoretical foundations, but there is still the need for real-time rescheduling methods that can work effectively in disruption management. In this work, a novel approach for automatic generation of rescheduling knowledge using Relational Reinforcement Learning (RRL) is presented. Relational representations of schedule states and repair operators enable to encode in a compact way and use in real-time rescheduling knowledge learned through intensive simulations of state transitions. An industrial example where a current schedule must be repaired following the arrival of a new order is discussed using a prototype application – SmartGantt®- for interactive rescheduling in a reactive way. SmartGantt® demonstrates the advantages of resorting to RRL and abstract states for real-time rescheduling. A small number of training episodes are required to define a repair policy which can handle on the fly events such as order insertion, resource break-down, raw material delay or shortage and rush order arrivals using a sequence of operators to achieve a selected goal.
Palabras clave: Reinforcement Learning , Rescheduling , Production Systems , Relational Abstractions
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.292Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/70280
URL: http://periodicos.incubadora.ufsc.br/index.php/IJIE/article/view/1568
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Real-time rescheduling of production systems using relational reinforcement learning; QUALIS CAPES (UFSC); Iberoamerican Journal of Industrial Engineering; 3; 2; 12-2011; 136-153
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES