Mostrar el registro sencillo del ítem

dc.contributor.author
Walsh, Miguel Nicolás  
dc.date.available
2019-01-21T17:25:15Z  
dc.date.issued
2012-07  
dc.identifier.citation
Walsh, Miguel Nicolás; The inverse Sieve problem in high dimensions; Duke University Press; Duke Mathematical Journal; 161; 10; 7-2012; 2001-2022  
dc.identifier.issn
0012-7094  
dc.identifier.uri
http://hdl.handle.net/11336/68296  
dc.description.abstract
We show that if a big set of integer points S ⊆ [0, N] d, d > 1, occupies few residue classes mod p for many primes p, then it must essentially lie in the solution set of some polynomial equation of low degree. This answers a question of Helfgott and Venkatesh.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Duke University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Sieve Theory  
dc.subject
Arithmetic Combinatorics  
dc.subject
Inverse Sieve Problem  
dc.subject
Polynomial Method  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The inverse Sieve problem in high dimensions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-16T18:29:34Z  
dc.journal.volume
161  
dc.journal.number
10  
dc.journal.pagination
2001-2022  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Walsh, Miguel Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Duke Mathematical Journal  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.dmj/1340801630  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1215/00127094-1645788