Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The effectiveness of Bayesian state-space models for estimating behavioural states from movement paths

Beyer, Hawthorne L.; Morales, Juan ManuelIcon ; Murray, Dennis; Fortin, Marie Josee
Fecha de publicación: 05/2013
Editorial: Wiley
Revista: Methods in Ecology and Evolution
ISSN: 2041-210X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

1. Bayesian state-space movement models have been proposed as a method of inferring behavioural states from movement paths (Morales et al. 2004), thereby providing insight into the behavioural processes from which patterns of animal space use arise in heterogeneous environments. It is not clear, however, how effective state-space models are at estimating behavioural states. 2. We use stochastic simulations of twomovementmodels to quantify how behavioural state movement characteristics affect classification error. State-space movement models can be a highly effective approach to estimating behavioural states frommovement paths. 3. Classification accuracy was contingent upon the degree of separation between the distributions that characterize the states (e.g. step length and turn angle distributions) and the relative frequency of the Behavioural states. In the best case scenarios classification accuracy approached 100%, but was close to 0%when step length and turn angle distributions of each state were similar, or when one state was rare. Mean classification accuracy was uncorrelated with path length, but the variance in classification accuracy was inversely related to path length. 4. Importantly, we find that classification accuracy can be predicted based on the separation between distributions that characterize the movement paths, thereby providing a method of estimating classification accuracy for real movement paths. We demonstrate this approach using radiotelemetry relocation data of 34 moose (Alces alces). 5. We conclude that Bayesian state-space models offer powerful new opportunities for inferring behavioural states from relocation data.
Palabras clave: Clasiffication Accuracy , Correlated Random Walk , Global Positioning System , Mechanistic Movement Modelling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 962.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/6697
URL: http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12026/abstract
DOI: http://dx.doi.org/ 10.1111/2041-210X.12026
DOI: http://dx.doi.org/10.1111/2041-210X.12026
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
Beyer, Hawthorne L.; Morales, Juan Manuel; Murray, Dennis; Fortin, Marie Josee; The effectiveness of Bayesian state-space models for estimating behavioural states from movement paths; Wiley; Methods in Ecology and Evolution; 4; 5; 5-2013; 433-441
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES