Mostrar el registro sencillo del ítem

dc.contributor.author
Boulard, Damien  
dc.contributor.author
Castel, Thierry  
dc.contributor.author
Camberlin, Pierre  
dc.contributor.author
Sergent, Anne Sophie  
dc.contributor.author
Asse, Daphné  
dc.contributor.author
Bréda, Nathalie  
dc.contributor.author
Badeau, Vincent  
dc.contributor.author
Rossi, Aurélien  
dc.contributor.author
Pohl, Benjamin  
dc.date.available
2018-11-28T20:22:16Z  
dc.date.issued
2017-01-15  
dc.identifier.citation
Boulard, Damien; Castel, Thierry; Camberlin, Pierre; Sergent, Anne Sophie; Asse, Daphné; et al.; Bias correction of dynamically downscaled precipitation to compute soil water deficit for explaining year-to-year variation of tree growth over northeastern France; Elsevier Science; Agricultural And Forest Meteorology; 232; 15-1-2017; 247-264  
dc.identifier.issn
0168-1923  
dc.identifier.uri
http://hdl.handle.net/11336/65536  
dc.description.abstract
This paper documents the accuracy of a post-correction method applied to precipitation regionalized by the Weather Research and Forecasting (WRF) Regional Climate Model (RCM) for improving simulated rainfall and feeding impact studies. The WRF simulation covers Burgundy (northeastern France) at a 8-km resolution and over a 20-year long period (1989–2008). Previous results show a strong deficiency of the WRF model for simulating precipitation, especially when convective processes are involved. In order to reduce such biases, a Quantile Mapping (QM) method is applied to WRF-simulated precipitation using the mesoscale atmospheric analyses system SAFRAN («Système d'Analyse Fournissant des Renseignements Adaptés à la Nivologie») that provides precipitation data at an 8 km resolution. Raw and post-corrected model outputs are next used to compute the soil water balance of 30 Douglas-fir and 57 common Beech stands across Burgundy, for which radial growth data are available. Results show that the QM method succeeds at reducing the model's wet biases in spring and summer. Significant improvements are also noted for rainfall seasonality and interannual variability, as well as its spatial distribution. Based on both raw and post-corrected rainfall time series, a Soil Water Deficit Index (SWDI) is next computed as the sum of the daily deviations between the relative extractible water and a critical value of 40% below which the low soil water content induce stomatal regulation. Post-correcting WRF precipitation does not significantly improve the simulation of the SWDI upon the raw (uncorrected) model outputs. Two characteristic years were diagnosed to explain this unexpected lack of improvement. Although the QM method allows producing realistic precipitation amounts, it does not correct the timing errors produced by the climate model, which is yet a major issue to obtain reliable estimators of local-scale bioclimatic conditions for impact studies. A realistic temporality of simulated precipitation is thus required before using any systematic post-correction method for appropriate climate impact assessment over temperate forests.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Common Beech  
dc.subject
Douglas-Fir  
dc.subject
Quantile Mapping  
dc.subject
Regional Climate Modelling  
dc.subject
Soil Water Deficit  
dc.subject
Water Balance  
dc.subject
Wrf  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bias correction of dynamically downscaled precipitation to compute soil water deficit for explaining year-to-year variation of tree growth over northeastern France  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-29T15:10:30Z  
dc.journal.volume
232  
dc.journal.pagination
247-264  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Boulard, Damien. Universite de Bourgogne; Francia  
dc.description.fil
Fil: Castel, Thierry. Universite de Bourgogne; Francia  
dc.description.fil
Fil: Camberlin, Pierre. Universite de Bourgogne; Francia  
dc.description.fil
Fil: Sergent, Anne Sophie. Institut National de la Recherche Agronomique; Francia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; Argentina  
dc.description.fil
Fil: Asse, Daphné. Crea Centre de Recherches Sur Les Ecosystèmes Daltitud; Francia  
dc.description.fil
Fil: Bréda, Nathalie. Institut National de la Recherche Agronomique; Francia  
dc.description.fil
Fil: Badeau, Vincent. Institut National de la Recherche Agronomique; Francia  
dc.description.fil
Fil: Rossi, Aurélien. Universite de Bourgogne; Francia  
dc.description.fil
Fil: Pohl, Benjamin. Universite de Bourgogne; Francia  
dc.journal.title
Agricultural And Forest Meteorology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.agrformet.2016.08.021  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168192316303768