Mostrar el registro sencillo del ítem
dc.contributor.author
Diener, Peter
dc.contributor.author
Joe, Anton
dc.contributor.author
Megevand Politano, Miguel Federico
dc.contributor.author
Singh, Parampreet
dc.date.available
2018-11-08T13:42:27Z
dc.date.issued
2017-04-10
dc.identifier.citation
Diener, Peter; Joe, Anton; Megevand Politano, Miguel Federico; Singh, Parampreet; Numerical simulations of loop quantum Bianchi-I spacetimes; IOP Publishing; Classical and Quantum Gravity; 34; 9; 10-4-2017; 1-37
dc.identifier.issn
0264-9381
dc.identifier.uri
http://hdl.handle.net/11336/63943
dc.description.abstract
Due to the numerical complexities of studying evolution in an anisotropic quantum spacetime, in comparison to the isotropic models, the physics of loop quantized anisotropic models has remained largely unexplored. In particular, robustness of bounce and the validity of effective dynamics have so far not been established. Our analysis fills these gaps for the case of vacuum Bianchi-I spacetime. To efficiently solve the quantum Hamiltonian constraint we perform an implementation of the Cactus framework which is conventionally used for applications in numerical relativity. Using high performance computing, numerical simulations for a large number of initial states with a wide variety of fluctuations are performed. Big bang singularity is found to be replaced by anisotropic bounces for all the cases. We find that for initial states which are sharply peaked at the late times in the classical regime and bounce at a mean volume much greater than the Planck volume, effective dynamics is an excellent approximation to the underlying quantum dynamics. Departures of the effective dynamics from the quantum evolution appear for the states probing deep Planck volumes. A detailed analysis of the behavior of this departure reveals a non-monotonic and subtle dependence on fluctuations of the initial states. We find that effective dynamics in almost all of the cases underestimates the volume and hence overestimates the curvature at the bounce, a result in synergy with earlier findings in the isotropic case. The expansion and shear scalars are found to be bounded throughout the evolution.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Loop Quantum Cosmology
dc.subject
Numerical Methods
dc.subject
Singularity Resolution
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Numerical simulations of loop quantum Bianchi-I spacetimes
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-22T18:18:38Z
dc.identifier.eissn
1361-6382
dc.journal.volume
34
dc.journal.number
9
dc.journal.pagination
1-37
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Diener, Peter. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Joe, Anton. State University of Louisiana; Estados Unidos
dc.description.fil
Fil: Megevand Politano, Miguel Federico. State University of Louisiana; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
dc.description.fil
Fil: Singh, Parampreet. State University of Louisiana; Estados Unidos
dc.journal.title
Classical and Quantum Gravity
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1088/1361-6382/aa68b5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1701.05824
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1361-6382/aa68b5/meta
Archivos asociados