Mostrar el registro sencillo del ítem
dc.contributor.author
Bali, Juan Lucas
dc.contributor.author
Boente Boente, Graciela Lina
dc.date.available
2018-10-24T20:00:29Z
dc.date.issued
2017-09
dc.identifier.citation
Bali, Juan Lucas; Boente Boente, Graciela Lina; Robust estimators under a functional common principal components model; Elsevier Science; Computational Statistics and Data Analysis; 113; 9-2017; 424-440
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/63020
dc.description.abstract
When dealing with several populations of functional data, equality of the covariance operators is often assumed even when seeking for a lower-dimensional approximation to the data. Usually, if this assumption does not hold, one estimates the covariance operator of each group separately, which leads to a large number of parameters. As in the multivariate setting, this is not satisfactory since the covariance operators may exhibit some common structure, as is, for instance, the assumption of common principal directions. The existing procedures to estimate the common directions are sensitive to atypical observations. For that reason, robust projection-pursuit estimators for the common directions under a common principal component model are considered. A numerical method to compute the first directions is also provided. Under mild conditions, consistency results are obtained. A Monte Carlo study is performed to compare the finite sample behaviour of the estimators based on robust scales and on the standard deviation. The usefulness of the proposed approach is illustrated on a real data set.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Common Principal Component Model
dc.subject
Fisher-Consistency
dc.subject
Functional Data Analysis
dc.subject
Outliers
dc.subject
Projection-Pursuit
dc.subject
Robust Estimation
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust estimators under a functional common principal components model
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-22T16:49:38Z
dc.journal.volume
113
dc.journal.pagination
424-440
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Bali, Juan Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Universidad de Buenos Aires; Argentina. Universidad Nacional de San Martín; Argentina
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
dc.journal.title
Computational Statistics and Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2016.08.017
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947316302080
Archivos asociados