Mostrar el registro sencillo del ítem
dc.contributor.author
Wurster, Benjamin
dc.contributor.author
Grumelli, Doris Elda
dc.contributor.author
Hötger, Diana
dc.contributor.author
Gutzler, Rico
dc.contributor.author
Kern, Klaus
dc.date.available
2018-10-09T18:40:14Z
dc.date.issued
2016-03
dc.identifier.citation
Wurster, Benjamin; Grumelli, Doris Elda; Hötger, Diana; Gutzler, Rico; Kern, Klaus; Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts; American Chemical Society; Journal of the American Chemical Society; 138; 11; 3-2016; 3623-3626
dc.identifier.issn
0002-7863
dc.identifier.uri
http://hdl.handle.net/11336/61989
dc.description.abstract
Developing efficient catalysts for electrolysis, in particular for the oxygen evolution in the anodic half cell reaction, is an important challenge in energy conversion technologies. By taking inspiration from the catalytic properties of single-atom catalysts and metallo-proteins, we exploit the potential of metal-organic networks as electrocatalysts in the oxygen evolution reaction (OER). A dramatic enhancement of the catalytic activity toward the production of oxygen by nearly 2 orders of magnitude is demonstrated for novel heterobimetallic organic catalysts compared to metallo-porphyrins. Using a supramolecular approach we deliberately place single iron and cobalt atoms in either of two different coordination environments and observe a highly nonlinear increase in the catalytic activity depending on the coordination spheres of Fe and Co. Catalysis sets in at about 300 mV overpotential with high turnover frequencies that outperform other metal-organic catalysts like the prototypical hangman porphyrins.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
2d Bimetallic Networks
dc.subject
Electrocatalysis
dc.subject
Surface Science
dc.subject
Oxygen Evolution
dc.subject.classification
Nano-materiales
dc.subject.classification
Nanotecnología
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-24T13:53:18Z
dc.journal.volume
138
dc.journal.number
11
dc.journal.pagination
3623-3626
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Wurster, Benjamin. Max Planck Institute for Solid State Research; Alemania
dc.description.fil
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Hötger, Diana. Max Planck Institute for Solid State Research; Alemania
dc.description.fil
Fil: Gutzler, Rico. Max Planck Institute for Solid State Research; Alemania
dc.description.fil
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; Suiza
dc.journal.title
Journal of the American Chemical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/jacs.5b10484
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/jacs.5b10484
Archivos asociados