Mostrar el registro sencillo del ítem

dc.contributor.author
Wurster, Benjamin  
dc.contributor.author
Grumelli, Doris Elda  
dc.contributor.author
Hötger, Diana  
dc.contributor.author
Gutzler, Rico  
dc.contributor.author
Kern, Klaus  
dc.date.available
2018-10-09T18:40:14Z  
dc.date.issued
2016-03  
dc.identifier.citation
Wurster, Benjamin; Grumelli, Doris Elda; Hötger, Diana; Gutzler, Rico; Kern, Klaus; Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts; American Chemical Society; Journal of the American Chemical Society; 138; 11; 3-2016; 3623-3626  
dc.identifier.issn
0002-7863  
dc.identifier.uri
http://hdl.handle.net/11336/61989  
dc.description.abstract
Developing efficient catalysts for electrolysis, in particular for the oxygen evolution in the anodic half cell reaction, is an important challenge in energy conversion technologies. By taking inspiration from the catalytic properties of single-atom catalysts and metallo-proteins, we exploit the potential of metal-organic networks as electrocatalysts in the oxygen evolution reaction (OER). A dramatic enhancement of the catalytic activity toward the production of oxygen by nearly 2 orders of magnitude is demonstrated for novel heterobimetallic organic catalysts compared to metallo-porphyrins. Using a supramolecular approach we deliberately place single iron and cobalt atoms in either of two different coordination environments and observe a highly nonlinear increase in the catalytic activity depending on the coordination spheres of Fe and Co. Catalysis sets in at about 300 mV overpotential with high turnover frequencies that outperform other metal-organic catalysts like the prototypical hangman porphyrins.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
2d Bimetallic Networks  
dc.subject
Electrocatalysis  
dc.subject
Surface Science  
dc.subject
Oxygen Evolution  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Driving the Oxygen Evolution Reaction by Nonlinear Cooperativity in Bimetallic Coordination Catalysts  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-24T13:53:18Z  
dc.journal.volume
138  
dc.journal.number
11  
dc.journal.pagination
3623-3626  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Wurster, Benjamin. Max Planck Institute for Solid State Research; Alemania  
dc.description.fil
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Hötger, Diana. Max Planck Institute for Solid State Research; Alemania  
dc.description.fil
Fil: Gutzler, Rico. Max Planck Institute for Solid State Research; Alemania  
dc.description.fil
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; Suiza  
dc.journal.title
Journal of the American Chemical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/jacs.5b10484  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/jacs.5b10484