Artículo
Scaling laws in the quantum-to-classical transition in chaotic systems
Fecha de publicación:
02/2009
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
1539-3755
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the quantum-to-classical transition in a chaotic system surrounded by a diffusive environment. First, we analyze the emergence of classicality when it is monitored by the Renyi entropy, a measure of the entanglement of a system with its environment. We show that the Renyi entropy has a transition from quantum to classical behavior that scales with eff2 D, where eff is the effective Planck constant and D is the strength of the noise. However, it was recently shown that a different scaling law controls the quantum-to-classical transition when it is measured comparing the corresponding phase-space distributions. Then, we discuss the meaning of both scalings in the precise definition of a frontier between the classical and quantum behaviors. Finally, we show that there are quantum coherences that the Renyi entropy is unable to detect, which questions its use in studies of decoherence. © 2009 The American Physical Society.
Palabras clave:
Quantum-Classical Transition
,
Chaos
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Wisniacki, Diego Ariel; Toscano, Fabricio; Scaling laws in the quantum-to-classical transition in chaotic systems; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 79; 2; 2-2009; 252031-252034
Compartir
Altmétricas