Mostrar el registro sencillo del ítem

dc.contributor.author
Giribet, Gaston Enrique  
dc.contributor.author
Oliva, Julio  
dc.contributor.author
Tempo, David  
dc.contributor.author
Troncoso, Ricardo  
dc.date.available
2018-09-26T16:44:02Z  
dc.date.issued
2009-12  
dc.identifier.citation
Giribet, Gaston Enrique; Oliva, Julio; Tempo, David; Troncoso, Ricardo; Microscopic entropy of the three-dimensional rotating black hole of Bergshoeff-Hohm-Townsend massive gravity; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 80; 12; 12-2009; 124046-124046  
dc.identifier.issn
1550-7998  
dc.identifier.uri
http://hdl.handle.net/11336/60896  
dc.description.abstract
Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent "gravitational hair" parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger's holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy's formula, in exact agreement with the semiclassical result. © 2009 The American Physical Society.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cft  
dc.subject
3d Gravity  
dc.subject
Ads/Cft  
dc.subject
Black Holes  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Microscopic entropy of the three-dimensional rotating black hole of Bergshoeff-Hohm-Townsend massive gravity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-24T14:33:16Z  
dc.journal.volume
80  
dc.journal.number
12  
dc.journal.pagination
124046-124046  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Oliva, Julio. Centro de Estudios Cientificos; Chile. Universidad Austral de Chile; Chile  
dc.description.fil
Fil: Tempo, David. Centro de Estudios Cientificos; Chile. Université Libre de Bruxelles; Bélgica. Universidad de Concepción; Chile  
dc.description.fil
Fil: Troncoso, Ricardo. Centro de Estudios Cientificos; Chile  
dc.journal.title
Physical Review D: Particles, Fields, Gravitation and Cosmology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevD.80.124046