Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing the usefulness of online message board mining in automatic stock prediction systems

Gálvez, Ramiro Heraclio; Gravano, AgustinIcon
Fecha de publicación: 03/2017
Editorial: Elsevier Science
Revista: Journal of Computational Science
ISSN: 1877-7503
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

We provide evidence of the usefulness of exploiting online text data in stock prediction systems. We do this by mining a popular Argentinian stock message board and empirically answering two questions. First, is there information in the online stock message board useful for predicting stock returns? Second, if useful information is found, is it novel or it is simply a different way of expressing information already available in the past behavior of stock prices? To address these questions, we build and validate a series of predictive models using state-of-the-art machine learning and topic discovery techniques. Running experiments in which the models are trained with different combinations of features extracted from the past behavior of stock prices, or mined from the online message boards. Evidence suggests that it is possible to extract predictive information from stock message boards. Furthermore, we find that adding this information improves the performance of classification systems trained solely on technical indicators. Our results suggest that information from online text data is complementary to the one available in the past evolution of stock prices. Additionally, we find that highly predictive features derived from the message board data seem to have an important and relevant semantic content.
Palabras clave: LATENT SEMANTIC ANALYSIS , RANDOM FOREST , RIDGE REGRESSION , STOCK MARKET , TEXT MINING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.830Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/60065
DOI: http://dx.doi.org/10.1016/j.jocs.2017.01.001
URL: https://www.sciencedirect.com/science/article/pii/S1877750317300091
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Gálvez, Ramiro Heraclio; Gravano, Agustin; Assessing the usefulness of online message board mining in automatic stock prediction systems; Elsevier Science; Journal of Computational Science; 19; 3-2017; 43-56
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES