Artículo
Autonomous learning by simple dynamical systems with a discrete-time formulation
Fecha de publicación:
05/2017
Editorial:
Springer
Revista:
European Physical Journal B - Condensed Matter
ISSN:
1434-6028
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.
Palabras clave:
Statistical And Nonlinear Physics
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(IFIMAR)
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Articulos de INST.DE INVESTIGACIONES FISICAS DE MAR DEL PLATA
Citación
Bilen, Agustín Miguel; Kaluza, Pablo Federico; Autonomous learning by simple dynamical systems with a discrete-time formulation; Springer; European Physical Journal B - Condensed Matter; 90; 5; 5-2017; 1-9
Compartir
Altmétricas