Artículo
Increase in the quality of the prediction of a computational wildfire behavior method through the improvement of the internal metaheuristic
Fecha de publicación:
05/2016
Editorial:
Elsevier
Revista:
Fire Safety Journal
ISSN:
0379-7112
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Wildfires cause great losses and harms every year, some of which are often irreparable. Among the different strategies and technologies available to mitigate the effects of fire, wildfire behavior prediction may be a promising strategy. This approach allows for the identification of areas at greatest risk of being burned, thereby permitting to make decisions which in turn will help to reduce losses and damages. In this work we present an Evolutionary-Statistical System with Island Model, a new approach of the uncertainty reduction method Evolutionary-Statistical System. The operation of ESS is based on statistical analysis, parallel computing and Parallel Evolutionary Algorithms (PEA). ESS-IM empowers and broadens the search process and space by incorporating the Island Model in the metaheuristic stage (PEA), which increases the level of parallelism and, in fact, it permits to improve the quality of predictions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Méndez, Miguel Ángel; Bianchini, German; Caymes Scutari, Paola Guadalupe; Tardivo, María Laura; Increase in the quality of the prediction of a computational wildfire behavior method through the improvement of the internal metaheuristic; Elsevier; Fire Safety Journal; 82; 5-2016; 49-62
Compartir
Altmétricas