Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Social group recommendation in the tourism domain

Christensen, Ingrid AlinaIcon ; Schiaffino, Silvia NoemiIcon ; Armentano, Marcelo GabrielIcon
Fecha de publicación: 10/2016
Editorial: Springer
Revista: Journal Of Intelligent Information Systems
ISSN: 0925-9902
e-ISSN: 1573-7675
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Recommender Systems learn users’ preferences and tastes in different domains to suggest potentially interesting items to users. Group Recommender Systems generate recommendations that intend to satisfy a group of users as a whole, instead of individual users. In this article, we present a social based approach for recommender systems in the tourism domain, which builds a group profile by analyzing not only users’ preferences, but also the social relationships between members of a group. This aspect is a hot research topic in the recommender systems area. In addition, to generate the individual and group recommendations our approach uses a hybrid technique that combines three well-known filtering techniques: collaborative, content-based and demographic filtering. In this way, the disadvantages of one technique are overcome by the others. Our approach was materialized in a recommender system named Hermes, which suggests tourist attractions to both individuals and groups of users. We have obtained promising results when comparing our approach with classic approaches to generate recommendations to individual users and groups. These results suggest that considering the type of users’ relationship to provide recommendations to groups leads to more accurate recommendations in the tourism domain. These findings can be helpful for recommender systems developers and for researchers in this area.
Palabras clave: Recommender Systems , Social Recommender Systems , Tourism
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 753.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/58605
URL: https://link.springer.com/article/10.1007/s10844-016-0400-0
DOI: http://dx.doi.org/10.1007/s10844-016-0400-0
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Christensen, Ingrid Alina; Schiaffino, Silvia Noemi; Armentano, Marcelo Gabriel; Social group recommendation in the tourism domain; Springer; Journal Of Intelligent Information Systems; 47; 2; 10-2016; 209-231
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES