Mostrar el registro sencillo del ítem

dc.contributor.author
Belardinelli, Rolando Elio  
dc.contributor.author
Pereyra, Victor Daniel  
dc.contributor.author
Dickman, Ronald  
dc.contributor.author
Lourenço, Bruno Jeferson  
dc.date.available
2016-05-16T20:24:59Z  
dc.date.issued
2014-06-02  
dc.identifier.citation
Belardinelli, Rolando Elio; Pereyra, Victor Daniel; Dickman, Ronald; Lourenço, Bruno Jeferson; Intrinsic convergence properties of entropic sampling algorithms; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 7; 2-6-2014; 1-13  
dc.identifier.issn
1742-5468  
dc.identifier.uri
http://hdl.handle.net/11336/5691  
dc.description.abstract
We study the convergence of the density of states and thermodynamic properties in three flat-histogram simulation methods, the Wang–Landau (WL) algorithm, the 1/t algorithm, and tomographic sampling (TS). In the first case the refinement parameter f is rescaled (f → f/2) each time the flat-histogram condition is satisfied, in the second f ~ 1/t after a suitable initial phase, while in the third f is constant (t corresponds to Monte Carlo time). To examine the intrinsic convergence properties of these methods, free of any complications associated with a specific model, we study a featureless entropy landscape, such that for each allowed energy E = 1, ..., L, there is exactly one state, that is, g(E) = 1 for all E. Convergence of sampling corresponds to g(E, t) → const. as t → ∞, so that the standard deviation σg of g over energy values is a measure of the overall sampling error. Neither the WL algorithm nor TS converge: in both cases σg saturates at long times. In the 1/t algorithm, by contrast, σg decays $\propto 1/\sqrt{t}$ . Modified TS and 1/t procedures, in which f ∝ 1/tα, converge for α values between 0 < α ≤ 1. There are two essential facets to convergence of flat-histogram methods: elimination of initial errors in g(E) and correction of the sampling noise accumulated during the process. For a simple example, we demonstrate analytically, using a Langevin equation, that both kinds of errors can be eliminated, asymptotically, if f ~ 1/t α with 0 < α ≤ 1. Convergence is optimal for α = 1. For α ≤ 0 the sampling noise never decays, while for α > 1 the initial error is never completely eliminated.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Iop Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Stochastic Processes  
dc.subject
Analysis of Algorithm  
dc.subject
Monte Carlo Simulation  
dc.subject
Entropic Sampling  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Intrinsic convergence properties of entropic sampling algorithms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-05-13T13:45:45Z  
dc.journal.volume
2014  
dc.journal.number
7  
dc.journal.pagination
1-13  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Belardinelli, Rolando Elio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina  
dc.description.fil
Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; Argentina  
dc.description.fil
Fil: Dickman, Ronald. Universidade Federal do Minas Gerais; Brasil  
dc.description.fil
Fil: Lourenço, Bruno Jeferson. Universidade Federal do Minas Gerais; Brasil  
dc.journal.title
Journal Of Statistical Mechanics: Theory And Experiment  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2014/07/P07007  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1742-5468/2014/00/000000  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/00/000000