Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Intrinsic convergence properties of entropic sampling algorithms

Belardinelli, Rolando ElioIcon ; Pereyra, Victor DanielIcon ; Dickman, Ronald; Lourenço, Bruno Jeferson
Fecha de publicación: 02/06/2014
Editorial: Iop Publishing
Revista: Journal Of Statistical Mechanics: Theory And Experiment
ISSN: 1742-5468
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física Atómica, Molecular y Química

Resumen

We study the convergence of the density of states and thermodynamic properties in three flat-histogram simulation methods, the Wang–Landau (WL) algorithm, the 1/t algorithm, and tomographic sampling (TS). In the first case the refinement parameter f is rescaled (f → f/2) each time the flat-histogram condition is satisfied, in the second f ~ 1/t after a suitable initial phase, while in the third f is constant (t corresponds to Monte Carlo time). To examine the intrinsic convergence properties of these methods, free of any complications associated with a specific model, we study a featureless entropy landscape, such that for each allowed energy E = 1, ..., L, there is exactly one state, that is, g(E) = 1 for all E. Convergence of sampling corresponds to g(E, t) → const. as t → ∞, so that the standard deviation σg of g over energy values is a measure of the overall sampling error. Neither the WL algorithm nor TS converge: in both cases σg saturates at long times. In the 1/t algorithm, by contrast, σg decays $\propto 1/\sqrt{t}$ . Modified TS and 1/t procedures, in which f ∝ 1/tα, converge for α values between 0 < α ≤ 1. There are two essential facets to convergence of flat-histogram methods: elimination of initial errors in g(E) and correction of the sampling noise accumulated during the process. For a simple example, we demonstrate analytically, using a Langevin equation, that both kinds of errors can be eliminated, asymptotically, if f ~ 1/t α with 0 < α ≤ 1. Convergence is optimal for α = 1. For α ≤ 0 the sampling noise never decays, while for α > 1 the initial error is never completely eliminated.
Palabras clave: Stochastic Processes , Analysis of Algorithm , Monte Carlo Simulation , Entropic Sampling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 358.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/5691
URL: http://iopscience.iop.org/article/10.1088/1742-5468/2014/07/P07007
DOI: http://dx.doi.org/10.1088/1742-5468/2014/00/000000
DOI: http://dx.doi.org/ 10.1088/1742-5468/2014/00/000000
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Belardinelli, Rolando Elio; Pereyra, Victor Daniel; Dickman, Ronald; Lourenço, Bruno Jeferson; Intrinsic convergence properties of entropic sampling algorithms; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 7; 2-6-2014; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES