Artículo
Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions
Fecha de publicación:
04/2012
Editorial:
IOP Publishing
Revista:
Physical Biology
ISSN:
1478-3967
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Cell movement and intercellular signaling occur simultaneously during the development of tissues, but little is known about how movement affects signaling. Previous theoretical studies have shown that faster moving cells favor synchronization across a population of locally coupled genetic oscillators. An important assumption in these studies is that cells can immediately interact with their new neighbors after arriving at a new location. However, intercellular interactions in cellular systems may need some time to become fully established. How movement affects synchronization in this situation has not been examined. Here, we develop a coupled phase oscillator model in which we consider cell movement and the gradual recovery of intercellular coupling experienced by a cell after movement, characterized by a moving rate and a coupling recovery rate, respectively. We find (1) an optimal moving rate for synchronization and (2) a critical moving rate above which achieving synchronization is not possible. These results indicate that the extent to which movement enhances synchrony is limited by a gradual recovery of coupling. These findings suggest that the ratio of time scales of movement and signaling recovery is critical for information transfer between moving cells. © 2012 IOP Publishing Ltd.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Uriu, Koichiro; Ares, Saúl; Oates, Andrew C.; Morelli, Luis Guillermo; Optimal cellular mobility for synchronization arising from the gradual recovery of intercellular interactions; IOP Publishing; Physical Biology; 9; 3; 4-2012; 1-11
Compartir
Altmétricas