Mostrar el registro sencillo del ítem

dc.contributor.author
Boulard, Damien  
dc.contributor.author
Castel, Thierry  
dc.contributor.author
Camberlin, Pierre  
dc.contributor.author
Sergent, Anne Sophie  
dc.contributor.author
Bréda, Nathalie  
dc.contributor.author
Badeau, Vincent  
dc.contributor.author
Rossi, Aurélien  
dc.contributor.author
Pohl, Benjamin  
dc.date.available
2018-08-02T20:09:01Z  
dc.date.issued
2016-05-05  
dc.identifier.citation
Boulard, Damien; Castel, Thierry; Camberlin, Pierre; Sergent, Anne Sophie; Bréda, Nathalie; et al.; Capability of a regional climate model to simulate climate variables requested for water balance computation: a case study over northeastern France; Springer; Climate Dynamics; 46; 9-10; 5-5-2016; 2689-2716  
dc.identifier.issn
0930-7575  
dc.identifier.uri
http://hdl.handle.net/11336/53964  
dc.description.abstract
This paper documents the capability of the ARW/WRF regional climate model to regionalize near-surface atmospheric variables at high resolution (8 km) over Burgundy (northeastern France) from daily to interannual timescales. To that purpose, a 20-year continuous simulation (1989–2008) was carried out. The WRF model driven by ERA-Interim reanalyses was compared to in situ observations and a mesoscale atmospheric analyses system (SAFRAN) for five near-surface variables: precipitation, air temperature, wind speed, relative humidity and solar radiation, the last four variables being used for the calculation of potential evapotranspiration (ET0). Results show a significant improvement upon ERA-Interim. This is due to a good skill of the model to reproduce the spatial distribution for all weather variables, in spite of a slight over-estimation of precipitation amounts mostly during the summer convective season, and wind speed during winter. As compared to the Météo-France observations, WRF also improves upon SAFRAN analyses, which partly fail at showing realistic spatial distributions for wind speed, relative humidity and solar radiation—the latter being strongly underestimated. The SAFRAN ET0 is thus highly under-estimated too. WRF ET0 is in better agreement with observations. In order to evaluate WRF’s capability to simulate a reliable ET0, the water balance of thirty Douglas-fir stands was computed using a process-based model. Three soil water deficit indexes corresponding to the sum of the daily deviations between the relative extractible water and a critical value of 40 % below which the low soil water content affects tree growth, were calculated using the nearest weather station, SAFRAN analyses weather data, or by merging observation and WRF weather variables. Correlations between Douglas-fir growth and the three estimated soil water deficit indexes show similar results. These results showed through the ET0 estimation and the relation between mean annual SWDI and Douglas-fir growth index that the main difficulties of the WRF model to simulate soil water deficit is mainly attributable to its precipitation biases. In contrast, the low discrepancies between WRF and observations for air temperature, wind speed, relative humidity and solar radiation make then usable for the water balance and ET0 computation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Douglas-Fir  
dc.subject
Potential Evapo-Transpiration  
dc.subject
Regional Climate Modelling  
dc.subject
Soil Water Deficit  
dc.subject
Water Balance  
dc.subject
Wrf  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Capability of a regional climate model to simulate climate variables requested for water balance computation: a case study over northeastern France  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-07-11T15:01:10Z  
dc.journal.volume
46  
dc.journal.number
9-10  
dc.journal.pagination
2689-2716  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Boulard, Damien. Universite de Bourgogne; Francia  
dc.description.fil
Fil: Castel, Thierry. Universite de Bourgogne; Francia. Agrosup; Francia  
dc.description.fil
Fil: Camberlin, Pierre. Universite de Bourgogne; Francia  
dc.description.fil
Fil: Sergent, Anne Sophie. Université de Lorraine; Francia. Institut National de la Recherche Agronomique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Bréda, Nathalie. Institut National de la Recherche Agronomique; Francia  
dc.description.fil
Fil: Badeau, Vincent. Institut National de la Recherche Agronomique; Francia  
dc.description.fil
Fil: Rossi, Aurélien. Universite de Bourgogne; Francia  
dc.description.fil
Fil: Pohl, Benjamin. Universite de Bourgogne; Francia  
dc.journal.title
Climate Dynamics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00382-015-2724-9  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00382-015-2724-9