Mostrar el registro sencillo del ítem

dc.contributor.author
Grumelli, Doris Elda  
dc.contributor.author
Wurtser, Benjamin  
dc.contributor.author
Stepanow, Sabastian  
dc.contributor.author
Kern, Klaus  
dc.date.available
2016-04-21T17:26:16Z  
dc.date.issued
2013-12  
dc.identifier.citation
Grumelli, Doris Elda; Wurtser, Benjamin; Stepanow, Sabastian; Kern, Klaus; Bio-inspired nanocatalysts for the oxygen reduction reaction; Nature; Nature Communications; 4; 2904; 12-2013; 1-6  
dc.identifier.issn
2041-1723  
dc.identifier.uri
http://hdl.handle.net/11336/5313  
dc.description.abstract
Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Bidemensional Metal Organic Coordination Networks  
dc.subject
Stm  
dc.subject
Uhv  
dc.subject
Electrocatalysis  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bio-inspired nanocatalysts for the oxygen reduction reaction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-05-06 15:52:43.262787-03  
dc.journal.volume
4  
dc.journal.number
2904  
dc.journal.pagination
1-6  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Max Planck Institute for Solid State Research; Alemania  
dc.description.fil
Fil: Wurtser, Benjamin. Max Planck Institute for Solid State Research; Alemania  
dc.description.fil
Fil: Stepanow, Sabastian. Max Planck Institute for Solid State Research; Alemania  
dc.description.fil
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. Ecole Polytechnique Federale de Lausanne; Suiza  
dc.journal.title
Nature Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1038/ncomms3904  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/ncomms/2013/131205/ncomms3904/full/ncomms3904.html  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/ncomms3904