Artículo
Regression models based on new local strategies for near infrared spectroscopic data
Allegrini, Franco
; Fernández Pierna, J. A.; Fragoso, W. D.; Olivieri, Alejandro Cesar
; Baeten, V.; Dardenne, P.


Fecha de publicación:
08/2016
Editorial:
Elsevier Science
Revista:
Analytica Chimica Acta
ISSN:
0003-2670
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, a comparative study of two novel algorithms to perform sample selection in local regression based on Partial Least Squares Regression (PLS) is presented. These methodologies were applied for Near Infrared Spectroscopy (NIRS) quantification of five major constituents in corn seeds and are compared and contrasted with global PLS calibrations. Validation results show a significant improvement in the prediction quality when local models implemented by the proposed algorithms are applied to large data bases.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos de INST.DE QUIMICA ROSARIO
Citación
Allegrini, Franco; Fernández Pierna, J. A.; Fragoso, W. D.; Olivieri, Alejandro Cesar; Baeten, V.; et al.; Regression models based on new local strategies for near infrared spectroscopic data; Elsevier Science; Analytica Chimica Acta; 933; 8-2016; 50-58
Compartir
Altmétricas