Artículo
Topological Kondo insulators in one dimension: Continuous Haldane-type ground-state evolution from the strongly interacting to the noninteracting limit
Fecha de publicación:
08/2017
Editorial:
American Physical Society
Revista:
Physical Review B: Condensed Matter and Materials Physics
ISSN:
2469-9950
e-ISSN:
2469-9969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study, by means of the density-matrix renormalization group (DMRG) technique, the evolution of the ground state in a one-dimensional topological insulator, from the noninteracting to the strongly interacting limit, where the system can be mapped onto a topological Kondo-insulator model. We focus on a toy model Hamiltonian (i.e., the interacting "sp-ladder" model), which could be experimentally realized in optical lattices with higher orbitals loaded with ultracold fermionic atoms. Our goal is to shed light on the emergence of the strongly interacting ground state and its topological classification as the Hubbard U interaction parameter of the model is increased. Our numerical results show that the ground state can be generically classified as a symmetry-protected topological phase of the Haldane type, even in the noninteracting case U=0 where the system can be additionally classified as a time-reversal Z2-topological insulator, and evolves adiabatically between the noninteracting and strongly interacting limits.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Lisandrini, Franco Thomas; Lobos, Alejandro Martin; Dobry, Ariel Oscar; Gazza, Claudio Javier; Topological Kondo insulators in one dimension: Continuous Haldane-type ground-state evolution from the strongly interacting to the noninteracting limit; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 96; 7; 8-2017; 75124-75133
Compartir
Altmétricas