Mostrar el registro sencillo del ítem
dc.contributor.author
Gomez, Daniel Osvaldo
dc.contributor.author
De Luca, Edward E.
dc.contributor.author
Mininni, Pablo Daniel
dc.date.available
2018-05-30T17:32:32Z
dc.date.issued
2016-02
dc.identifier.citation
Gomez, Daniel Osvaldo; De Luca, Edward E.; Mininni, Pablo Daniel; Simulations of the Kelvin-Helmholtz instability driven by coronal mass ejections in the turbulent corona; IOP Publishing; Astrophysical Journal; 818; 2; 2-2016; 1261-1269
dc.identifier.issn
0004-637X
dc.identifier.uri
http://hdl.handle.net/11336/46656
dc.description.abstract
Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Sun
dc.subject
Coronal Mass Ejections
dc.subject
Instabilities
dc.subject
Turbulence
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Simulations of the Kelvin-Helmholtz instability driven by coronal mass ejections in the turbulent corona
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-05-21T17:23:24Z
dc.journal.volume
818
dc.journal.number
2
dc.journal.pagination
1261-1269
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Gomez, Daniel Osvaldo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina. Harvard-Smithsonian Center for Astrophysics; Estados Unidos
dc.description.fil
Fil: De Luca, Edward E.. Harvard-Smithsonian Center for Astrophysics; Estados Unidos
dc.description.fil
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.journal.title
Astrophysical Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.3847/0004-637X/818/2/126/meta
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3847/0004-637X/818/2/126
Archivos asociados