Mostrar el registro sencillo del ítem

dc.contributor.author
Grosse, Kathrin  
dc.contributor.author
González, María Paula  
dc.contributor.author
Chesñevar, Carlos Iván  
dc.contributor.author
Maguitman, Ana Gabriela  
dc.date.available
2018-05-18T20:06:53Z  
dc.date.issued
2015-07  
dc.identifier.citation
Grosse, Kathrin; González, María Paula; Chesñevar, Carlos Iván; Maguitman, Ana Gabriela; Integrating argumentation and sentiment analysis for mining opinions from Twitter; IOS Press; AI Communications; 28; 3; 7-2015; 387-401  
dc.identifier.issn
0921-7126  
dc.identifier.uri
http://hdl.handle.net/11336/45644  
dc.description.abstract
Social networks have grown exponentially in use and impact on the society as a whole. In particular, microblogging platforms such as Twitter have become important tools to assess public opinion on different issues. Recently, some approaches for assessing Twitter messages have been developed, identifying sentiments associated with relevant keywords or hashtags. However, such approaches have an important limitation, as they do not take into account contradictory and potentially inconsistent information which might emerge from relevant messages. We contend that the information made available in Twitter can be useful to extract a particular version of arguments (called “opinions” in our formalization) which emerge bottom-up from the social interaction associated with such messages. In this paper we present a novel framework which allows to mine opinions from Twitter based on incrementally generated queries. As a result, we will be able to obtain an “opinion tree”, rooted in the first original query. Distinguished, conflicting elements in an opinion tree lead to so-called “conflict trees”, which resemble dialectical trees as those used traditionally in defeasible argumentation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOS Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Artificial Intelligence  
dc.subject
Argumentation  
dc.subject
Opinion Mining  
dc.subject
Social Media  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Integrating argumentation and sentiment analysis for mining opinions from Twitter  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-26T15:07:32Z  
dc.identifier.eissn
1875-8452  
dc.journal.volume
28  
dc.journal.number
3  
dc.journal.pagination
387-401  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Grosse, Kathrin. Universität Osnabrück. Institut für Kognitionswissenschaft; Alemania  
dc.description.fil
Fil: González, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina  
dc.description.fil
Fil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina  
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina  
dc.journal.title
AI Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://content.iospress.com/articles/ai-communications/aic627  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3233/AIC-140627