Mostrar el registro sencillo del ítem
dc.contributor.author
Grosse, Kathrin
dc.contributor.author
González, María Paula
dc.contributor.author
Chesñevar, Carlos Iván
dc.contributor.author
Maguitman, Ana Gabriela
dc.date.available
2018-05-18T20:06:53Z
dc.date.issued
2015-07
dc.identifier.citation
Grosse, Kathrin; González, María Paula; Chesñevar, Carlos Iván; Maguitman, Ana Gabriela; Integrating argumentation and sentiment analysis for mining opinions from Twitter; IOS Press; AI Communications; 28; 3; 7-2015; 387-401
dc.identifier.issn
0921-7126
dc.identifier.uri
http://hdl.handle.net/11336/45644
dc.description.abstract
Social networks have grown exponentially in use and impact on the society as a whole. In particular, microblogging platforms such as Twitter have become important tools to assess public opinion on different issues. Recently, some approaches for assessing Twitter messages have been developed, identifying sentiments associated with relevant keywords or hashtags. However, such approaches have an important limitation, as they do not take into account contradictory and potentially inconsistent information which might emerge from relevant messages. We contend that the information made available in Twitter can be useful to extract a particular version of arguments (called “opinions” in our formalization) which emerge bottom-up from the social interaction associated with such messages. In this paper we present a novel framework which allows to mine opinions from Twitter based on incrementally generated queries. As a result, we will be able to obtain an “opinion tree”, rooted in the first original query. Distinguished, conflicting elements in an opinion tree lead to so-called “conflict trees”, which resemble dialectical trees as those used traditionally in defeasible argumentation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOS Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Artificial Intelligence
dc.subject
Argumentation
dc.subject
Opinion Mining
dc.subject
Social Media
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Integrating argumentation and sentiment analysis for mining opinions from Twitter
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-26T15:07:32Z
dc.identifier.eissn
1875-8452
dc.journal.volume
28
dc.journal.number
3
dc.journal.pagination
387-401
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Grosse, Kathrin. Universität Osnabrück. Institut für Kognitionswissenschaft; Alemania
dc.description.fil
Fil: González, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
dc.description.fil
Fil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina
dc.journal.title
AI Communications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://content.iospress.com/articles/ai-communications/aic627
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3233/AIC-140627
Archivos asociados