Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Integrating argumentation and sentiment analysis for mining opinions from Twitter

Grosse, Kathrin; González, María PaulaIcon ; Chesñevar, Carlos IvánIcon ; Maguitman, Ana GabrielaIcon
Fecha de publicación: 07/2015
Editorial: IOS Press
Revista: AI Communications
ISSN: 0921-7126
e-ISSN: 1875-8452
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Social networks have grown exponentially in use and impact on the society as a whole. In particular, microblogging platforms such as Twitter have become important tools to assess public opinion on different issues. Recently, some approaches for assessing Twitter messages have been developed, identifying sentiments associated with relevant keywords or hashtags. However, such approaches have an important limitation, as they do not take into account contradictory and potentially inconsistent information which might emerge from relevant messages. We contend that the information made available in Twitter can be useful to extract a particular version of arguments (called “opinions” in our formalization) which emerge bottom-up from the social interaction associated with such messages. In this paper we present a novel framework which allows to mine opinions from Twitter based on incrementally generated queries. As a result, we will be able to obtain an “opinion tree”, rooted in the first original query. Distinguished, conflicting elements in an opinion tree lead to so-called “conflict trees”, which resemble dialectical trees as those used traditionally in defeasible argumentation.
Palabras clave: Artificial Intelligence , Argumentation , Opinion Mining , Social Media
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 623.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/45644
URL: http://content.iospress.com/articles/ai-communications/aic627
DOI: http://dx.doi.org/10.3233/AIC-140627
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Grosse, Kathrin; González, María Paula; Chesñevar, Carlos Iván; Maguitman, Ana Gabriela; Integrating argumentation and sentiment analysis for mining opinions from Twitter; IOS Press; AI Communications; 28; 3; 7-2015; 387-401
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES