Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

SciELO Suggester: An intelligent support tool for cataloging library resources

Mitzig, Natalia l.; Mitzig, Mónica S.; Martinez, Fernando A.; Piriz, Ricardo A.; Ferracutti, Victor M.; González, María PaulaIcon ; Maguitman, Ana GabrielaIcon
Fecha de publicación: 01/2016
Editorial: Elsevier
Revista: Library & Information Science Research
ISSN: 0740-8188
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Existing cataloging interfaces are designed to reduce the bottleneck of creating, editing, and refining bibliographic records by offering a convenient framework for data entry. However, the cataloger still has to deal with the difficult task of deciding what information to include. The SciELO Suggester system is an innovative tool developed to overcome certain general limitations encountered in current mechanisms for entering descriptions of library records. The proposed tool provides useful suggestions about what information to include in newly created records. Thus, it assists catalogers with their task, as they are typically unfamiliar with the heterogeneous nature of the incoming material. The suggester tool applies case-based reasoning to generate suggestions taken from material previously cataloged in the SciELO scientific electronic library. The system is implemented as a web service and it can be easily used by installing an add-on for the Mozilla Firefox browser. The tool has been evaluated through a human-subject study with catalogers and through an automatic test using a collection consisting of 5742 training examples and 120 test cases from 12 different subject areas. In both experiments the system has shown very good performance. These evaluations indicate that the use of case-based reasoning provides a powerful alternative to traditional ways of identifying subject areas and keywords in library resources. In addition, a heuristic evaluation of the tool was carried out by taking as a starting point the Sirius heuristic-based framework, resulting in a very good score. Finally, a specially designed cognitive walk was completed with catalogers, providing additional insights into the strengths and weaknesses of the tool.
Palabras clave: Cataloging , Library , Suggester , Case-Based Reasoning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.332Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/44453
URL: http://www.sciencedirect.com/science/article/pii/S0740818816300251
DOI: http://dx.doi.org/10.1016/j.lisr.2016.01.001
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Mitzig, Natalia l.; Mitzig, Mónica S.; Martinez, Fernando A.; Piriz, Ricardo A.; Ferracutti, Victor M.; et al.; SciELO Suggester: An intelligent support tool for cataloging library resources; Elsevier; Library & Information Science Research; 38; 1; 1-2016; 39-51
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES