Artículo
Complex patterns in networks of hyperexcitable neurons
Fecha de publicación:
20/06/2016
Editorial:
Elsevier Science
Revista:
Theoretical Computer Science
ISSN:
0304-3975
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Complex patterns in neuronal networks emerge from the cooperative activity of the participating neurons, synaptic connectivity and network topology. Several neuron types exhibit complex intrinsic dynamics due to the presence of nonlinearities and multiple time scales. In this paper we extend previous work on hyperexcitability of neuronal networks, a hallmark of epileptic brain seizure generation, which results from the net imbalance between excitation and inhibition and the ability of certain neuron types to exhibit abrupt transitions between low and high firing frequency regimes as the levels of recurrent AMPA excitation change. We examine the effect of different topologies and connection delays on the hyperexcitability phenomenon in networks having recurrent synaptic AMPA (fast) excitation (in the absence of synaptic inhibition) and demonstrate the emergence of additional time scales.
Palabras clave:
Neuronal Networks
,
Synchronization
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Schindewolf, Craig; Kim, Dongwook; Bel, Andrea Liliana; Rotstein, Horacio; Complex patterns in networks of hyperexcitable neurons; Elsevier Science; Theoretical Computer Science; 633; 20-6-2016; 71-82
Compartir
Altmétricas