Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Intelligent Algorithms for Improving Communication Patterns in Thematic P2P Search

Nicolini, Ana LucíaIcon ; Lorenzetti, Carlos MartinIcon ; Maguitman, Ana GabrielaIcon ; Chesñevar, Carlos IvánIcon
Fecha de publicación: 03/2017
Editorial: Pergamon-Elsevier Science Ltd
Revista: Information Processing & Management
ISSN: 0306-4573
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The Internet is a cooperative and decentralized network built out of millions of participants that store and share large amounts of information with other users. Peer-to-peer systems go hand-in-hand with this huge decentralized network, where each individual node can serve content as well as request it. In this scenario, the analysis, development and testing of distributed search algorithms is a key research avenue. In particular, thematic search algorithms should lead to and benefit from the emergence of semantic communities that are the result of the interaction among participants. As a result, intelligent algorithms for neighbor selection should give rise to a logical network topology reflecting efficient communication patterns. This paper presents a series of algorithms which are specifically aimed at reducing the propagation of queries in the network, by applying a novel approach for learning peers´ interests. These algorithms were constructed in an incremental way, so that each new algorithm presents some improvements over the previous ones. Promising results were obtained through different simulations designed to test the reduction of query propagation as well as the maximization of the clustering coefficient of the emergent logical network.
Palabras clave: P2p Systems , Thematic Search , Semantic Communities
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 10.29Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/42738
DOI: http://dx.doi.org/10.1016/j.ipm.2016.12.001
URL: https://www.sciencedirect.com/science/article/pii/S0306457316306793
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Nicolini, Ana Lucía; Lorenzetti, Carlos Martin; Maguitman, Ana Gabriela; Chesñevar, Carlos Iván; Intelligent Algorithms for Improving Communication Patterns in Thematic P2P Search; Pergamon-Elsevier Science Ltd; Information Processing & Management; 53; 2; 3-2017; 388-404
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES