Artículo
Interaction of Ester-Functionalized Ionic Liquids with Atomically-Defined Cobalt Oxides Surfaces: Adsorption, Reaction and Thermal Stability
Xu, Tao; Waehler, Tobias; Vecchietti, María Julia
; Bonivardi, Adrian Lionel
; Bauer, Tanja; Schwegler, Johannes; Schulz, Peter S.; Wasserscheid, Peter; Libuda, Joerg
Fecha de publicación:
12/2017
Editorial:
Wiley VCH Verlag
Revista:
Chemphyschem
ISSN:
1439-4235
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Hybrid materials consisting of ionic liquid (ILs) films on supported oxides hold a great potential for applications in electronic and energy materials. In this work, we have performed surface science model studies scrutinizing the interaction of ester-functionalized ILs with atomically defined Co3O4(111) and CoO(100) surfaces. Both supports are prepared under ultra-high vacuum (UHV) conditions in form of thin films on Ir(100) single crystals. Subsequently, thin films of three ILs, 3-butyl-1-methyl imidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTf2]), 3-(4-methoxyl-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([MBMIM][NTf2]), and 3-(4-isopropoxy-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([IPBMIM][NTf2]), were deposited on these surfaces by physical vapor deposition (PVD). Time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) were applied to monitor in situ the adsorption, film growth, and thermally induced desorption. By TP-IRAS, we determined the multilayer desorption temperature of [BMIM][NTf2] (360±5 K), [MBMIM][NTf2] (380 K) and [IPBMIM][NTf2] (380 K). Upon deposition below the multilayer desorption temperature, all three ILs physisorb on both cobalt oxide surfaces. However, strong orientation effects are observed in the first monolayer, where the [NTf2]− ion interacts with the surface through the SO2 groups and the CF3 groups point towards the vacuum. For the two functionalized ILs, the [MBMIM]+ and [IPBMIM]+ interact with the surface Co2+ ions of both surfaces via the CO group of their ester function. A very different behavior is found, if the ILs are deposited above the multilayer desorption temperature (400 K). While for [BMIM][NTf2] and [MBMIM][NTf2] a molecularly adsorbed monolayer film is formed, [IPBMIM][NTf2] undergoes a chemical transformation on the CoO(100) surface. Here, the ester group is cleaved and the cation is chemically linked to the surface by formation of a surface carboxylate. The IL-derived species in the monolayer desorb at temperatures around 500 to 550 K.
Palabras clave:
Chemical Anchoring
,
Cobalt Oxide
,
Ionic Liquids
,
Iras
,
Thermal Stability
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Xu, Tao; Waehler, Tobias; Vecchietti, María Julia; Bonivardi, Adrian Lionel; Bauer, Tanja; et al.; Interaction of Ester-Functionalized Ionic Liquids with Atomically-Defined Cobalt Oxides Surfaces: Adsorption, Reaction and Thermal Stability; Wiley VCH Verlag; Chemphyschem; 18; 23; 12-2017; 3443-3453
Compartir
Altmétricas