Artículo
Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction
Contin, Mario Daniel
; Bonelli, Pablo Ricardo
; Lucangioli, Silvia Edith
; Cukierman, Ana Lea
; Tripodi, Valeria Paula





Fecha de publicación:
07/2016
Editorial:
Elsevier Science
Revista:
Journal of Chromatography - A
ISSN:
0021-9673
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Molecularly imprinted polymer nanoparticles (MIPNPs) with the ability to recognize coenzyme Q10 (CoQ10) were synthesised in order to be employed as sorbent in a dispersive micro-solid phase extraction (DMSPE) for the determination of CoQ10 in a liver extract. CoQ10 is a redox-active, lipophilic substance integrated in the mitochondrial respiratory chain which acts as an electron carrier, shuttling electrons from complex I (NADH-ubiquinone oxidoreductase) and II (succinate-ubiquinone oxidoreductase) to complex III (ubiquinol-cytochrome c reductase), for the production of cellular energy. The MIPNPs were synthesised by precipitation polymerization using coenzyme Q0 as the dummy template, methacrylic acid as the functional monomer, an acetonitrile: water mixture as the porogen, ethylene glycol dimethacrylate as the crosslinker and potassium persulfate as initiator. The nanoparticles were characterized by microscopy, capillary electrophoresis, dynamic light scattering, N2 adsorption–desorption isotherms, and infrared spectroscopy. The MIPNPs demonstrated the presence of selective cavities complementary to the quinone nucleus of CoQ10, leading to a specific recognition of CoQ10 compared with related compounds. In the liver extract the relative CoQ10 peak area (CoQ10 area/total peak area) increased from 4.6% to 25.4% after the DMSPE procedure. The recovery percentage of CoQ10 from the liver matrix was between 70.5% and 83.7% quantified against CoQ10 standard processed under the same conditions. The DMSPE procedure allows the elution of almost all the CoQ10 retained (99.4%) in a small volume (200 μL), allowing the sample to be concentrated 2.5 times (LOD: 1.1 μg g−1 and LOQ: 3.7 μg g−1 of tissue). The resulted clean up of the sample, the improvement in peak shape and baseline and the reduction of interferences, evidence that the MIPNPs could potentially be applied as sorbent in a DMSPE with satisfactory results and with a minimum amount of sorbent (1 mg).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos(OCA HOUSSAY)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Citación
Contin, Mario Daniel; Bonelli, Pablo Ricardo; Lucangioli, Silvia Edith; Cukierman, Ana Lea; Tripodi, Valeria Paula; Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction; Elsevier Science; Journal of Chromatography - A; 1456; 7-2016; 1-9
Compartir
Altmétricas