Artículo
Probabilistic matching pursuit with Gabor dictionaries
Fecha de publicación:
12/2000
Editorial:
Elsevier Science
Revista:
Signal Processing
ISSN:
0165-1684
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose a probabilistic extension of the matching pursuit adaptive signal processing algorithm introduced by Mallat and others. In adaptive signal processing, signals are expanded in terms of a large linearly dependent `dictionary' of functions rather than in terms of an orthonormal basis. Matching pursuit is a simple greedy algorithm for generating an expansion of a given signal. In probabilistic matching pursuit multiple random expansions are obtained as estimates for a given signal. The new algorithm is illustrated in the context of signal denoising. Although most of the random expansions generated by probabilistic matching pursuit are poorer estimates for the signal than those obtained by matching pursuit, our final estimate, obtained as an expected value computed by means of an ergodic average, can improve the result obtained by MP in some denoising situations. One of the major underlying ideas is a novel notion of coherence between a signal and the dictionary. Several simulated examples are presented.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Ferrando, Sebastian Esteban; Doolittle, E.J.; Bernal, A. J.; Bernal, Luis; Probabilistic matching pursuit with Gabor dictionaries; Elsevier Science; Signal Processing; 80; 10; 12-2000; 2099-2120
Compartir
Altmétricas