Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancing distributed EAs by a proactive strategy

Salto, CarolinaIcon ; Luna, Francisco; Alba, Enrique
Fecha de publicación: 10/2014
Editorial: Springer
Revista: Cluster Computing-the Journal Of Networks Software Tools And Applications
ISSN: 1386-7857
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest.
Palabras clave: Proactive Behaviour , Distributed Eas , Migration Period
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 887.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/36446
DOI: http://dx.doi.org/10.1007/s10586-013-0321-4
URL: https://link.springer.com/article/10.1007%2Fs10586-013-0321-4
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Salto, Carolina; Luna, Francisco; Alba, Enrique; Enhancing distributed EAs by a proactive strategy; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 17; 2; 10-2014; 219-229
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES