Artículo
Polarimetric SAR Image Segmentation using CEM Algorithm
Fernández Michelli, Juan Ignacio
; Hurtado, Martin
; Areta, Javier Alberto
; Muravchik, Carlos Horacio
Fecha de publicación:
08/2014
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Latin America Transactions
ISSN:
1548-0992
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we perform Synthetic Aperture Radar (SAR) polarimetric images segmentation based on the Classification-Expectation-Maximization (CEM) method, with both supervised and unsupervised initialization. In the former case, the algorithm is randomly initialized with the number of classes as the only initial information, while in the unsupervised case initialization is based on a previous classification. Real EMISAR Single-Look-Complex (SLC) data are used, with Mixing Gaussian model. Results are compared with those obtained by Wishart unsupervised classification method, which is a well-known and widely used method for radar image classification. Finally, Da-vies-Bouldin index is applied for quantitative comparison be-tween the obtained segmentations, and for studying the CEM method performance.
Palabras clave:
CEM
,
CLASSIFICATION
,
EXPECTATION MAXIMIZATION
,
SAR
,
SEGMENTATION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Polarimetric SAR Image Segmentation using CEM Algorithm; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 12; 5; 8-2014; 910-914
Compartir
Altmétricas