Mostrar el registro sencillo del ítem

dc.contributor.author
Yeves, Alejandra del Milagro  
dc.contributor.author
Villa-Abrille, María Celeste  
dc.contributor.author
Perez, Nestor Gustavo  
dc.contributor.author
Medina, Andrés Javier  
dc.contributor.author
Escudero, Eduardo M.  
dc.contributor.author
Ennis, Irene Lucia  
dc.date.available
2018-01-19T19:10:29Z  
dc.date.issued
2014-09  
dc.identifier.citation
Yeves, Alejandra del Milagro; Villa-Abrille, María Celeste; Perez, Nestor Gustavo; Medina, Andrés Javier; Escudero, Eduardo M.; et al.; Physiological cardiac hypertrophy: Critical role of AKT in the prevention of NHE-1 hyperactivity; Elsevier; Journal of Molecular and Cellular Cardiology; 76; 9-2014; 186-195  
dc.identifier.issn
0022-2828  
dc.identifier.uri
http://hdl.handle.net/11336/34005  
dc.description.abstract
Background: The involvement of NHE-1 hyperactivity, critical for pathological cardiac hypertrophy (CH), in physiological CH has not been elucidated yet. Stimulation of NHE-1 increases intracellular Na+ and Ca2 + favouring calcineurin activation. Since myocardial stretch, an activator of NHE-1, is common to both types of CH, we speculate that NHE-1 hyperactivity may also happen in physiological CH. However, calcineurin activation is characteristic only for pathological hypertrophy. We hypothesize that an inhibitory AKT-dependent mechanism prevents NHE-1 hyperactivity in the setup of physiological CH. Methods: Physiological CH was induced in rats by swimming (90 min/day, 12 weeks) or in cultured isolated cardiomyocytes with IGF-1 (10 nmol/L). Results: Training induced eccentric CH development (left ventricular weight/tibial length: 22.0 ± 0.3 vs. 24.3 ± 0.7 mg/mm; myocyte cross sectional area: 100 ± 3.2 vs. 117 ± 4.1 %; sedentary (Sed) and swim-trained (Swim) respectively; p < 0.05] with decreased myocardial stiffness and collagen deposition [1.7 ± 0.05 % (Sed) vs. 1.4 ± 0.09 % (Swim); p < 0.05]. Increased phosphorylation of AKT, ERK1/2, p90RSK and NHE-1 at the consensus site for ERK1/2-p90RSK were detected in the hypertrophied hearts (P-AKT: 134 ± 10 vs. 100 ± 5; P-ERK1/2: 164 ± 17 vs. 100 ± 18; P-p90RSK: 160 ± 18 vs. 100 ± 9; P-NHE-1 134 ± 10 vs. 100 ± 10; % in Swim vs. Sed respectively; p < 0.05). No significant changes were detected neither in calcineurin activation [calcineurin Aβ 100 ± 10 (Sed) vs. 96 ± 12 (Swim)], nor NFAT nuclear translocation [100 ± 3.11 (Sed) vs. 95 ± 9.81 % (Swim)] nor NHE-1 expression [100 ± 8.5 (Sed) vs. 95 ± 6.7 % (Swim)]. Interestingly, the inhibitory phosphorylation of the NHE-1 consensus site for AKT was increased in the hypertrophied myocardium (151.6 ± 19.4 (Swim) vs. 100 ± 9.5 % (Sed); p < 0.05). In isolated cardiomyocytes 24 hours IGF-1 increased cell area (114 ± 1.3 %; p < 0.05) and protein/DNA content (115 ± 3.9 %, p < 0.05), effects not abolished by NHE-1 inhibition with cariporide (114 ± 3 and 117 ± 4.4 %, respectively). IGF-1 significantly decreased NHE-1 activity during pHi recovery from sustained intracellular acidosis (JH + at pHi 6.8: 4.08 ± 0.74 and 9.09 ± 1.21 mmol/L/min, IGF-1 vs. control; p < 0.05), and abolished myocardial slow force response, the mechanical counterpart of stretch-induced NHE-1 activation. Conclusions: NHE-1 hyperactivity seems not to be involved in physiological CH development, contrary to what characterizes pathological CH. We propose that AKT, through an inhibitory phosphorylation of the NHE-1, prevents its stretch-induced activation. This posttranslational modification emerges as an adaptive mechanism that avoids NHE-1 hyperactivity preserving its housekeeping functioning.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Nhe-1  
dc.subject
Physiological Cardiac Hypertrophy  
dc.subject
Akt  
dc.subject
Igf-1  
dc.subject
Exercise Training  
dc.subject.classification
Fisiología  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Physiological cardiac hypertrophy: Critical role of AKT in the prevention of NHE-1 hyperactivity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-18T17:21:01Z  
dc.journal.volume
76  
dc.journal.pagination
186-195  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Yeves, Alejandra del Milagro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; Argentina  
dc.description.fil
Fil: Villa-Abrille, María Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; Argentina  
dc.description.fil
Fil: Perez, Nestor Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; Argentina  
dc.description.fil
Fil: Medina, Andrés Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; Argentina  
dc.description.fil
Fil: Escudero, Eduardo M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; Argentina  
dc.description.fil
Fil: Ennis, Irene Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; Argentina  
dc.journal.title
Journal of Molecular and Cellular Cardiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.yjmcc.2014.09.004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022282814002855