Mostrar el registro sencillo del ítem

dc.contributor.author
Kaluza, Pablo Federico  
dc.contributor.author
Urdapilleta, Eugenio  
dc.date.available
2018-01-17T21:36:06Z  
dc.date.issued
2014-10  
dc.identifier.citation
Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-11  
dc.identifier.issn
1434-6028  
dc.identifier.uri
http://hdl.handle.net/11336/33733  
dc.description.abstract
Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Neural  
dc.subject
Network  
dc.subject
Spiking  
dc.subject
Perceptron  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-03T20:01:49Z  
dc.journal.volume
87  
dc.journal.number
236  
dc.journal.pagination
1-11  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Kaluza, Pablo Federico. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
European Physical Journal B - Condensed Matter  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1140%2Fepjb%2Fe2014-50322-y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1140/epjb/e2014-50322-y