Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

Kaluza, Pablo FedericoIcon ; Urdapilleta, EugenioIcon
Fecha de publicación: 10/2014
Editorial: Springer
Revista: European Physical Journal B - Condensed Matter
ISSN: 1434-6028
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.
Palabras clave: Neural , Network , Spiking , Perceptron
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.964Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/33733
URL: http://link.springer.com/article/10.1140%2Fepjb%2Fe2014-50322-y
DOI: http://dx.doi.org/10.1140/epjb/e2014-50322-y
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES