Artículo
Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms
Fecha de publicación:
10/2014
Editorial:
Springer
Revista:
European Physical Journal B - Condensed Matter
ISSN:
1434-6028
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.
Palabras clave:
Neural
,
Network
,
Spiking
,
Perceptron
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Kaluza, Pablo Federico; Urdapilleta, Eugenio; Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms; Springer; European Physical Journal B - Condensed Matter; 87; 236; 10-2014; 1-11
Compartir
Altmétricas