Mostrar el registro sencillo del ítem
dc.contributor.author
Christensen, Ingrid Alina
dc.contributor.author
Schiaffino, Silvia Noemi
dc.date.available
2018-01-17T20:42:38Z
dc.date.issued
2014-04
dc.identifier.citation
Christensen, Ingrid Alina; Schiaffino, Silvia Noemi; A Hybrid Approach for Group Profiling in Recommender Systems; Graz University of Technology; Journal of Universal Computer Science; 20; 4; 4-2014; 507-533
dc.identifier.issn
0948-695X
dc.identifier.uri
http://hdl.handle.net/11336/33705
dc.description.abstract
Recommendation is a significant paradigm for information exploring, which focuses on the recovery of items of potential interest to users. Some activities tend to be social rather than individual, which puts forward the need to offer recommendations to groups of users. Group recommender systems present a whole set of new challenges within the field of recommender systems. In this paper, we present a hybrid approach based on group profiling for homogeneous and non-homogenous groups containing a few distant individual profiles among their members. This approach combines three familiar individual recommendation approaches: collaborative filtering, content-based filtering and demographic information. This hybrid approach allows the detection of those implicit similarities in the user rating profile, so as to include members with divergent profiles. We also describe the promising results obtained when evaluating the approach proposed in the movie and music domain.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Graz University of Technology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Group Profiling
dc.subject
Group Recommender Systems
dc.subject
Aggregate Ratings
dc.subject
Hybrid Recommender Systems
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Hybrid Approach for Group Profiling in Recommender Systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-16T18:48:05Z
dc.journal.volume
20
dc.journal.number
4
dc.journal.pagination
507-533
dc.journal.pais
Austria
dc.journal.ciudad
Graz
dc.description.fil
Fil: Christensen, Ingrid Alina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Journal of Universal Computer Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3217/jucs-020-04-0507
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.jucs.org/jucs_20_4/a_hybrid_approach_for
Archivos asociados