Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Hybrid Approach for Group Profiling in Recommender Systems

Christensen, Ingrid AlinaIcon ; Schiaffino, Silvia NoemiIcon
Fecha de publicación: 04/2014
Editorial: Graz University of Technology
Revista: Journal of Universal Computer Science
ISSN: 0948-695X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Recommendation is a significant paradigm for information exploring, which focuses on the recovery of items of potential interest to users. Some activities tend to be social rather than individual, which puts forward the need to offer recommendations to groups of users. Group recommender systems present a whole set of new challenges within the field of recommender systems. In this paper, we present a hybrid approach based on group profiling for homogeneous and non-homogenous groups containing a few distant individual profiles among their members. This approach combines three familiar individual recommendation approaches: collaborative filtering, content-based filtering and demographic information. This hybrid approach allows the detection of those implicit similarities in the user rating profile, so as to include members with divergent profiles. We also describe the promising results obtained when evaluating the approach proposed in the movie and music domain.
Palabras clave: Group Profiling , Group Recommender Systems , Aggregate Ratings , Hybrid Recommender Systems
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 868.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/33705
DOI: http://dx.doi.org/10.3217/jucs-020-04-0507
URL: http://www.jucs.org/jucs_20_4/a_hybrid_approach_for
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Christensen, Ingrid Alina; Schiaffino, Silvia Noemi; A Hybrid Approach for Group Profiling in Recommender Systems; Graz University of Technology; Journal of Universal Computer Science; 20; 4; 4-2014; 507-533
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES