Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Image Classification by means of CEM Algorithm based on a GARCH-2D data model

Pascual, Juan PabloIcon ; Fernández Michelli, Juan IgnacioIcon ; Von Ellenrieder, NicolásIcon ; Hurtado, MartinIcon ; Areta, Javier AlbertoIcon ; Muravchik, Carlos Horacio
Fecha de publicación: 08/2014
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Latin America Transactions
ISSN: 1548-0992
Idioma: Español
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

The aim of synthetic aperture radar (SAR) classification is to assign each pixel to a class according to a feature of the illuminated area. In this work, a classification method suitable for SAR images is presented through the maximum a posteriori (MAP) criteria by means of the expectation-maximization (EM) algorithm based on a mixture of GARCH-2D processes data model. This model assumes that the data probability density function (pdf) is a combination of a finite number of pdf's of GARCH-2D processes, that represent the pixel classes and whose parameters are estimated iteratively by means of the EM algorithm. Once the parameter estimation is performed, the a-posteriori probability of each pixel belonging to each class is computed and the classification is performed through the MAP criteria. Based on this model, the expressions for estimation and classification procedures are derived. Finally, the method performance is verified through a numeric example for a particular case and a comparison is performed between this approach and a variant of the classification algorithm based on a Gaussian mixture model for the data pdf.
Palabras clave: Synthetic Aperture Radar , Image Classification , Classification Algorithms , Data Models , Probability Density Function , Speckle , Surges
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 731.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/32940
DOI: http://dx.doi.org/10.1109/TLA.2014.6872899
URL: http://ieeexplore.ieee.org/document/6872899/
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Hurtado, Martin; Muravchik, Carlos Horacio; Areta, Javier Alberto; Fernández Michelli, Juan Ignacio; Pascual, Juan Pablo; Von Ellenrieder, Nicolás; et al.; Image Classification by means of CEM Algorithm based on a GARCH-2D data model; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 12; 5; 8-2014; 877-882
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES