Evento
Minimum clique cover in claw-free perfect graphs and the weak Edmonds-Johnson property
Tipo del evento:
Conferencia
Nombre del evento:
16th Conference on Integer Programming and Combinatorial Optimization
Fecha del evento:
18/03/2013
Institución Organizadora:
Universidad Técnica Federico Santa María;
Mathematical Optimization Society;
Título del Libro:
Integer Programming and Combinatorial Optimization: 16th International Conference
Editorial:
Springer
ISBN:
978-3-642-36694-9
Idioma:
Inglés
Clasificación temática:
Resumen
We give new algorithms for the minimum (weighted) clique cover in a claw-free perfect graph G, improving the complexity from O(|V(G)|^5) to O(|V(G)|^3). The new algorithms build upon neat reformulations of the problem: it basically reduces either to solving a 2-SAT instance (in the unweighted case) or to testing if a polyhedra associated with the edge-vertex incidence matrix of a bidirected graph has an integer solution (in the weighted case). The latter question was elegantly answered using neat polyhedral arguments by Schrijver in 1994. We give an alternative approach to this question combining pure combinatorial arguments (using techniques from 2-SAT and shortest paths) with polyhedral ones. Our approach is inspired by an algorithm from the Constraint Logic Programming community and we give as a side benefit a formal proof that the corresponding algorithm is correct (apparently answering an open question in this community). Interestingly, the systems we study have properties closely connected with the so-called Edmonds-Johnson property and we study some interesting related questions.
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(IMAS)
Eventos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Eventos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Minimum clique cover in claw-free perfect graphs and the weak Edmonds-Johnson property; 16th Conference on Integer Programming and Combinatorial Optimization; Valparaíso; Chile; 2013; 86-97
Compartir
Altmétricas