Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Hyperspectral Imaging in the Food Industry: A Review

Título del libro: Computational Intelligence Based Hyperspectral Image Analysis and Applications

Cevoli, Chiara; Purlis, EmmanuelIcon ; Fabbri, Angelo
Fecha de publicación: 2025
Editorial: Springer
ISBN: 978-3-031-83126-3
Idioma: Inglés
Clasificación temática:
Alimentos y Bebidas

Resumen

Food supply chain involves many operations and processes with so-called critical control points where inspection of food is required to assess and thus ensure safety, but also to achieve certain specifications and sensory attributes. Traditional methods of food inspection include analytical procedures, and also expert/human evaluation, which are generally destructive, time-consuming, laborious and expensive. In order to improve efficiency and productivity, non-destructive, automatic, rapid and cost-effective methods of food inspection are continuously required to replace such traditional methods. In this regard, hyperspectral imaging (HSI) has emerged as a promising technique for food industry. In this chapter, we present a review about implementation at industrial scale of HSI technology for food safety and quality inspection. We consider both classification and quantification models and tasks, and discuss some key examples and applications to illustrate the use of HSI for solving industrial problems. Overall, there is still work to do to translate laboratory scale research into effective implementation of HSI at industrial scale.
Palabras clave: FOOD SAFETY , FOOD QUALITY , NON-DESTRUCTIVE , IN-LINE
Ver el registro completo
 
Archivos asociados
Tamaño: 853.0Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/271783
URL: https://doi.org/10.1007/978-3-031-83127-0_10
Colecciones
Capítulos de libros(ITAPROQ)
Capítulos de libros de INSTITUTO DE TECNOLOGIA DE ALIMENTOS Y PROCESOS QUIMICOS
Citación
Cevoli, Chiara; Purlis, Emmanuel; Fabbri, Angelo; Hyperspectral Imaging in the Food Industry: A Review; Springer; 2025; 251-270
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES