Mostrar el registro sencillo del ítem

dc.contributor.author
Ferrer, Luciana  
dc.contributor.author
McLaren, Mitchell  
dc.date.available
2025-09-24T12:37:45Z  
dc.date.issued
2020  
dc.identifier.citation
A Discriminative Condition-Aware Backend for Speaker Verification; 2020 IEEE International Conference on Acoustics, Speech and Signal Processing; Barcelona; España; 2020; 6604-6608  
dc.identifier.issn
2379-190X  
dc.identifier.uri
http://hdl.handle.net/11336/271761  
dc.description.abstract
We present a scoring approach for speaker verification that mimics the standard PLDA-based backend process used in most current speaker verification systems. However, unlike the standard backends, all parameters of the model are jointly trained to optimize the binary cross-entropy for the speaker verification task. We further integrate the calibration stage inside the model, making the parameters of this stage depend on metadata vectors that represent the conditions of the signals. We show that the proposed backend has excellent outof-the-box calibration performance on most of our test sets, making it an ideal approach for cases in which the test conditions are not known and development data is not available for training a domainspecific calibration model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SPEAKER VERIFICATION  
dc.subject
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS  
dc.subject
CALIBRATION  
dc.subject
CONDITION ROBUSTNESS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Discriminative Condition-Aware Backend for Speaker Verification  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-11-09T18:42:39Z  
dc.identifier.eissn
1520-6149  
dc.journal.pagination
6604-6608  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: McLaren, Mitchell. Sri International; Estados Unidos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/9053485  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
2020 IEEE International Conference on Acoustics, Speech and Signal Processing  
dc.date.evento
2020-05-04  
dc.description.ciudadEvento
Barcelona  
dc.description.paisEvento
España  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers  
dc.source.revista
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing  
dc.date.eventoHasta
2020-05-08  
dc.type
Conferencia