Mostrar el registro sencillo del ítem
dc.contributor.author
Ferrer, Luciana
dc.contributor.author
McLaren, Mitchell
dc.date.available
2025-09-24T12:37:45Z
dc.date.issued
2020
dc.identifier.citation
A Discriminative Condition-Aware Backend for Speaker Verification; 2020 IEEE International Conference on Acoustics, Speech and Signal Processing; Barcelona; España; 2020; 6604-6608
dc.identifier.issn
2379-190X
dc.identifier.uri
http://hdl.handle.net/11336/271761
dc.description.abstract
We present a scoring approach for speaker verification that mimics the standard PLDA-based backend process used in most current speaker verification systems. However, unlike the standard backends, all parameters of the model are jointly trained to optimize the binary cross-entropy for the speaker verification task. We further integrate the calibration stage inside the model, making the parameters of this stage depend on metadata vectors that represent the conditions of the signals. We show that the proposed backend has excellent outof-the-box calibration performance on most of our test sets, making it an ideal approach for cases in which the test conditions are not known and development data is not available for training a domainspecific calibration model.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SPEAKER VERIFICATION
dc.subject
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS
dc.subject
CALIBRATION
dc.subject
CONDITION ROBUSTNESS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Discriminative Condition-Aware Backend for Speaker Verification
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-11-09T18:42:39Z
dc.identifier.eissn
1520-6149
dc.journal.pagination
6604-6608
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: McLaren, Mitchell. Sri International; Estados Unidos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/9053485
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
dc.date.evento
2020-05-04
dc.description.ciudadEvento
Barcelona
dc.description.paisEvento
España
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.revista
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
dc.date.eventoHasta
2020-05-08
dc.type
Conferencia
Archivos asociados