Mostrar el registro sencillo del ítem

dc.contributor.author
Raimondo, Federico  
dc.contributor.author
Kamienkowski, Juan Esteban  
dc.contributor.author
Kamienkowski, Juan Esteban  
dc.contributor.author
Sigman, Mariano  
dc.date.available
2025-09-08T10:29:24Z  
dc.date.issued
2012-07  
dc.identifier.citation
Raimondo, Federico; Kamienkowski, Juan Esteban; Kamienkowski, Juan Esteban; Sigman, Mariano; CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis; Hindawi Publishing Corporation; Computational Intelligence and Neuroscience; 2012; 7-2012; 1-8  
dc.identifier.issn
1687-5273  
dc.identifier.uri
http://hdl.handle.net/11336/270484  
dc.description.abstract
In recent years, Independent Component Analysis (ICA) has become a standard to identify relevant dimensions of the data in neuroscience. ICA is a very reliable method to analyze data but it is, computationally, very costly. The use of ICA for online analysis of the data, used in brain computing interfaces, results are almost completely prohibitive. We show an increase with almost no cost (a rapid video card) of speed of ICA by about 25 fold. The EEG data, which is a repetition of many independent signals in multiple channels, is very suitable for processing using the vector processors included in the graphical units. We profiled the implementation of this algorithm and detected two main types of operations responsible of the processing bottleneck and taking almost 80% of computing time: vector-matrix and matrix-matrix multiplications. By replacing function calls to basic linear algebra functions to the standard CUBLAS routines provided by GPU manufacturers, it does not increase performance due to CUDA kernel launch overhead. Instead, we developed a GPU-based solution that, comparing with the original BLAS and CUBLAS versions, obtains a 25x increase of performance for the ICA calculation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Hindawi Publishing Corporation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
inteligencia artificial  
dc.subject
eeg  
dc.subject
gpu  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-04T12:32:56Z  
dc.journal.volume
2012  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Raimondo, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.description.fil
Fil: Kamienkowski, Juan Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.description.fil
Fil: Kamienkowski, Juan Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Neurociencia Integrativa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.description.fil
Fil: Sigman, Mariano. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Neurociencia Integrativa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Computational Intelligence and Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1155/2012/206972  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2012/206972