Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improving realism in abdominal ultrasound simulation combining a segmentation‐guided loss and polar coordinates training

Vitale, SantiagoIcon ; Orlando, José IgnacioIcon ; Iarussi, EmmanuelIcon ; Diaz, Alberto AlejandroIcon ; Larrabide, IgnacioIcon
Fecha de publicación: 03/2025
Editorial: American Association of Physicists in Medicine
Revista: Medical Physics
ISSN: 0094-2405
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Background: Ultrasound (US) simulation helps train physicians and medical students in image acquisition and interpretation, enabling safe practice of transducer manipulation and organ identification. Current simulators generate realistic images from reference scans. Although physics-based simulators provide real-time images, they lack sufficient realism, while recent deep learning-based models based on unpaired image-to-image translation improve realism but introduce anatomical inconsistencies.Purpose: We propose a novel framework to reduce hallucinations from generative adversarial networks (GANs) used on physics-based simulations, enhancing anatomical accuracy and realism in abdominal US simulation. Our method aims to produce anatomically consistent images free from artifacts within and outside the field of view (FoV).Methods: We introduce a segmentation-guided loss to enforce anatomical consistency by using a pre-trained Unet model that segments abdominal organs from physics-based simulated scans. Penalizing segmentation discrepancies before and after the translation cycle helps prevent unrealistic artifacts. Additionally, we propose training GANs on images in polar coordinates to limit the field of view to non-blank regions. We evaluated our approach on unpaired datasets comprising 617 real abdominal US images from a SonoSite-M turbo v1.3 scanner and 971 artificial scans from a ray-casting simulator. Data was partitioned at the patient level into training (70%), validation (10%), and testing (20%). Performance was quantitatively assessed with Frechet and Kernel Inception Distances (FID and KID), and organ-specific histogram distances, reporting 95% confidence intervals. We compared our model against generative methods such as CUT, UVCGANv2, and UNSB, performing statistical analyses using Wilcoxon tests (FID and KID with Bonferroni-corrected. A perceptual realism study involving expert radiologists was also conducted.Results: Our method significantly reduced FID and KID by 66% and 89%, respectively, compared to CycleGAN, and by 34% and 59% compared to the leading alternative UVCGANv2. No significant differences in echogenicity distributions were found between real and simulated images within liver and gallbladder regions. The user study indicated our simulated scans fooled radiologists in 36.2% of cases, outperforming other methods.Conclusions: Our segmentation-guided, polar-coordinates-trained CycleGAN framework significantly reduces hallucinations, ensuring anatomical consistency, and realism in simulated abdominal US images, surpassing existing methods.
Palabras clave: GENERATIVE ADVERSARIAL NETWORK , ULTRASOUND SIMULATION , HALLUCINATIONS
Ver el registro completo
 
Archivos asociados
Tamaño: 3.229Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/269619
URL: https://aapm.onlinelibrary.wiley.com/doi/10.1002/mp.17801
DOI: http://dx.doi.org/10.1002/mp.17801
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Vitale, Santiago; Orlando, José Ignacio; Iarussi, Emmanuel; Diaz, Alberto Alejandro; Larrabide, Ignacio; Improving realism in abdominal ultrasound simulation combining a segmentation‐guided loss and polar coordinates training; American Association of Physicists in Medicine; Medical Physics; 52; 6; 3-2025; 4540-4556
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES